
Continuity and Differentiability 
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 Also,  f(0) = 0.    ∴ f  is not continuous at x = 0  
 Since  f(x)  is not continuous, it is not differentiable. 
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 ∴  f1(x) is not differentiable at  x = 0.  It is differentiable at  x ∈  /{0}.  
 If  n > 1, then 
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 When x ≠ 0 , f n’(x) = 
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Then  f(x) is a continuous function with the discontinuity removed. 
 

4. (a) ( )
22

22

h
10h

h
10h

h
1

0h

0
1

h
1

0h0h

e
dh
1

h
1

dh
1

lim
e

h
1

lim
h

elim
h

eelim
h

)0(f)h0(flim0'f
→→

−

→

−−

→→
===

−
=

−+
=  , by L’hospital rule. 



  0
e2

hlim
e

h
2

h
1

lim
22 h

10h
h
1

3

2

0h
=

−
=

−
=

→→
   ∴ 

⎪⎩

⎪
⎨
⎧

=

≠=
−

0x,0

0x,e
x
2

)x('f
2x

1

3  

 (b) ( )
22

2
2

h
1

4

0h
h
1

4

0h4

h
1

0h

h
1

3

0h0h

e
dh
d

h
2

dh
d

lim
e

h
2

lim
h
e2lim

h

0e
h
2

lim
h

)0(f)h0(flim0"f
→→

−

→

−

→→
===

−
=

−+
= , by L’hospital rule. 

  0
e

4lim
e

h
2

h
8

lim
e

dh
1

h
4

dh
1

lim
e

h
4

lim
e

h
2

h
8

lim
22222 h

10h
h
1

3

3

0h
h
1

2

0h
h
1

2

0h
h
1

3

5

0h
===

−
=

−
=

−
=

→→→→→
 

5. We need to show only :  f(x) = 0  whenever  x  is irrational . 

 ∀ x0 ∈ I  and  x0  is irrational ,  there exists an infinite sequence  x1 , x2, …., xn , …  of rational 
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6. (a)  If  x0 = ½ ,  f(½) = ½ . 

  If   x  is rational,  
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  ∴  x  is continuous at  x0 = ½ . 

  If  x0 ≠ ½ ,  and  x  is rational.  Then  f(x0) = x0. 

  There exists an infinite sequence  x1 , x2, …., xn , …  of irrational numbers such that  . 0nn
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  This leads to contradiction as  1 – x0 = x0  has no solution if  x0 ≠ ½ . 

  The proof is similar if  x0 ≠ ½ ,  and  x  is irrational.   

 (b) If  g(x) = f(x) f(1 – x) ,  then  g(x) = x(1 – x) no matter  x  is rational or irrational. 

  Obviously  g(x)  is continuous since it is a quadratic function (polynomials are continuous) 
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8. f(xy) = f(x) + f(y)  ⇒  f(1) = f(1×1) = f(1) + f(1) = 2f(1)  ⇒  f(1) = 0. 
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